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The multiplication problem in singular PDEs

Singular PDEs = multiplication problem, e.g.

(∂t −∆)u = u ζ, in 2-dimensional torus,

(∂t − ∂2
x )u = ξ + (∂xu)2, in 1-dimensional torus,

with ζ or ξ of (parabolic) Hölder regularity (α− 2) and α < 1.

Expect u to be
α-Hölder, from heat semigroup regularizing properties.

� Rule of thumb – For f ∈ Cα1 and g ∈ Cα2 .

fg well-defined and continuous in f , g iff (α1 + α2) > 0.

Problem in the above equations if α ≤ 1.

� The mantra – If you can make sense of the ill-defined term F (Zi ,∇Zi , ζ) of
a singular PDE

L u = F (u,∇u, ζ),

for some reference objects Zi using extra arguments, you can make sense of the
ill-defined term F (u,∇u, ζ) for functions/distributions u that look like the
Zi ’s.
Leads to regularity structures, models and modelled distributions, and
paracontrolled calculus and paracontrolled systems.
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Micro vs macro
Regularity structures (RS) and paracontrolled calculus (PC) have their roots in
rough paths theory for ODEs driven by irregular controls

dzt = F (zt)dXt .

• RS – a ‘microscopic’ pointwise description of dynamics

zt − zs = F (zs)(Xt − Xs) + (negligeable)ts ;

needs

∫ t

s

(Xu − Xs)dXu.

Leads to models and modelled distributions.

• PC – a ‘macroscopic’ description

z = PF (z)X + (more regular);

needs XdX ,

with Bony’s paraproduct P, a bilinear Fourier-type operator. Leads to
paracontrolled calculus and paracontrolled systems.

Our aim in a singular PDE setting

microscopic description ⇐⇒ macroscopic description
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1. Pointwise description devices

Mimick
zt − zs = F (zs)(Xt − Xs) + (negligeable)ts

and describe distributions f (·) and possible solutions of a singular PDE as

f (·) '
∑
τ∈B

f τ (x)
(
Πxτ

)
(·), near each x ,

with x-dependent reference distributions (Πxτ)(·) indexed by a finite set of
labels τ ∈ B. Assume local description

f τ (y) '
∑
µ∈B+

f τµ(x) gyx(µ), near each x ,

with another set of x-dependent reference functions y 7→ gyx(µ), indexed by
another finite set of labels µ ∈ B+.

Consistency of repeated re-expansion around different points and requirement
that the g(τ) form a sufficiently rich family to describe an algebra of functions,
directly lead to the definition of a concrete regularity structure T and a model
(g ,Π) on it.
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1. Pointwise description devices

Write T = span(B), and T+ = span(B+).

� Concrete regularity structure T – A pair (T+,∆+), (T ,∆) of graded
linear spaces, with (T+,∆+) a Hopf algebra, and splitting ∆ : T → T ⊗ T+,
satisfying a right comodule identity

(∆⊗ I )∆ = (I ⊗∆+)∆,

f (·) '
∑
τ∈B

f τ (x)(Πxτ)(·).

� Model on T – A pair of maps (g ,Π) with the following properties.

• For all τ ∈ T+, one has g(τ) : Td → R, with all gx(·) multiplicative

,

and∣∣(gy ? g−1
x )(τ)

∣∣ . |y − x ||τ |,

for all τ ∈ T+,

• There is a map Π : T → S ′(Td), such that

Πxτ = (Π⊗ g−1
x )∆τ

has C |τ |-regularity at x (only).
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1. Pointwise description devices

Set gzy := gz ? g
−1
y , and ĝzy := (I ⊗ gzy )∆ : T → T .

Quantify the expansions for f (·) '
∑
τ∈B f

τ (x)
(
Πxτ

)
(·) and the f τ . Pick

γ ∈ R and set

Dγ(T , g) :=
{
f :=

(
f τ (x)

)
τ∈B, x∈Td ;

∣∣∣〈f(z)− ĝzy
(
f(y)
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, τ
〉∣∣∣ . |z − y |γ−|τ |,

∀τ ∈ T , ∀y , z ∈ Td
}

: modelled distributions

Reconstruction theorem (Hairer) – Given a model (g ,Π) on a regularity
structure T , there exists a linear continuous operator

R : Dγ(T , g)→ Cβ0 (Td)

such that ∣∣∣〈Rf −∑
τ

f τ (x)Πxτ, ϕ
λ
x

〉∣∣∣ . λ|τ |;

this map R is unique if γ > 0. It is called the reconstruction map.
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2. Fourier-type description devices



2. Fourier-type description devices: micro to macro
By Littlewood-Paley, a distribution a =

∑
ai , with ai smooth and

supp(âi ) ⊂ {annulus of size ' 2i}.

Write

ab =
∑
i�j

aibj +
∑
i∼j

aibj +
∑
j�i

aibj

= Pab + Π(a, b) + Pba.

The paraproduct terms Pab,Pba are always well-defined, not the case of the resonant
term Π(a, b). In Pab one modulates the high frequencies of b by low frequencies of a;
one can say that Pab looks like b in a Fourier sense. For a regularity structure T , write

∆σ =
∑
µ≤σ

µ⊗ (σ/µ) ∈ T ⊗ T+, ∆+τ =
∑
ν≤+τ

ν ⊗ (τ/+ν) ∈ T+ ⊗ T+.

Theorem (B.-Hoshino 2018) – Fix a regularity structure T and a model M = (g,Π)
on T . One can construct ‘reference functions/distributions’

{
[τ ]g ∈ C |τ |(Td )

}
τ∈B+

and
{

[σ]M ∈ C |σ|(Td )
}
σ∈B such that

g(τ) =
∑

1<+ν<+τ

Pg(τ/+ν)[ν]g + [τ ]g,

Πσ =
∑
µ<σ

Pg(σ/µ)[µ]M + [σ]M.

We talk of para-remainders [τ ]g, [σ]M; they depend continuously on the model M.
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2. Fourier-type description devices: micro to macro

Theorem (B.-Hoshino 2018) – Fix a regularity exponent γ ∈ R, and a model
M = (g,Π) on the regularity structure T .

One can associate to any modelled
distribution f(·) =

∑
σ∈B;|σ|<γ

f σ(·)σ ∈ Dγ(T , g),

a distribution [f]M ∈ Cγ(Td) such that one defines a reconstruction Rf of f setting

Rf :=
∑

σ∈B;|σ|<γ
Pf σ [σ]M + [f]M.

Each coefficient f σ also has a representation

f σ =
∑

σ<µ;|µ|<γ
Pf µ [µ/σ]g + [f σ]g,

for an [f σ]g ∈ Cγ−|σ|(Td ). Moreover, the para-remainder map

f 7→
(

[f]M,
(
[f σ]g

)
σ∈B

)
from Dγ(T , g) to Cγ(Td )×

∏
τ∈B Cγ−|τ |(Td ), is continuous.
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3. From paracontrolled systems to
models and modelled distributions



3. From paracontrolled systems to models: macro to micro

Given a regularity structure T , we have a continuous map

M = (g ,Π) 7→
(

[τ ]g , [σ]M
)
τ∈B+,σ∈B

.

Conversely, can we build from an a priori given family
(
[τ ], [σ]

)
τ∈B+,σ∈B a model

(g ,Π) on T such that [τ ]g = [τ ] and [σ]M = [σ]?

Emphasize that in a general regularity structure the maps g and Π are ‘independent’,
as long as they define a model. (For the models built on regularity structures
associated with a singular PDE, the map Π determines the map g .) Assume
B ' Nd × B•, with Nd for the polynomials. The main problem is in building g .

Proposition – If g is given, then for any family
(
[σ] ∈ C |σ|(Td )

)
σ∈B•,|σ|<0

there

exists a unique model (g ,Π) on T such that

Πσ =
∑

ν<σ,ν∈B
Pg(σ/ν)[ν] + [σ],

for all σ ∈ B• with |σ| < 0. The Π map depends continuously on g and the bracket
data.
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3. From paracontrolled systems to models: macro to micro

One assumes fairly weak assumptions on T , satisfied by all reasonable regularity
structures, like the regularity structures used for the study of singular PDEs. Assume
in particular B+ freely generated by B+

• and monomials.

� Main assumption on (T+,∆+)

(1 – Generating set) There exists a finite subset G+
• of B+

• such that

B+
• =

⊔
τ∈G+

•

{
τ/+X k ; k ∈ Nd , |τ | − |k| > 0

}
.

(2 – Inductive structure) On the terms appearing in ∆+τ , for all τ ∈ B+.

Theorem (B. Hoshino 2019) – Under weak assumptions, for any family(
[τ ] ∈ C |τ |(Td )

)
τ∈G+

•
there exists a unique g map on (T+,∆+) such that

g(τ) =
∑

µ<+τ,µ∈B+

Pg(τ/+µ)[µ]g + [τ ], ∀ τ ∈ G+
• .
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3. From paracontrolled systems to models: macro to micro

Theorem (B. Hoshino 2019) – For any reasonable regularity structure T , one has a
bi-Lipschitz parametrization of the space of models by∏

τ∈G+
•

C |τ |(Td )×
∏

σ∈B•,|σ|<0

C |σ|(Td ).

Corollary (B. Hoshino 2019) – The space of smooth models is dense in the space of
models, for a slightly weaker topology.

(A result similar to Corollary proved by Singh and Teichmann 2018.) The models used
for the study of singular PDEs are particular: their g maps are determined by their Π
maps; one talks of admissible models.

Theorem (B. Hoshino 2018) – For the regularity structures used for singular PDEs,
one has a bi-Lipschitz parametrization of the space of admissible models by∏

σ∈B•,|σ|<0

C |σ|(Td ).
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the set of branched rough paths – they used completely different methods.)
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One can create dynamics on the space of models solving (controlled) ODEs or
(stochastic) PDEs in the parametrization space.



3. From paracontrolled systems to models: applications

Extension theorem for rough paths (Lyons & Victoir 2007) – Given any R` -valued
Hölder control h on a bounded time interval, one can lift h into a rough path.

Extension theorem for models (B. Hoshino 2018-2019) – Given a multi-dimensional
noise ζ = (ζ1, . . . , ζ`), with ζi ∈ C |ζi |(Td ) and |ζi | < 0, and a reasonable regularity
structure T with symbols •i of homogeneity |ζi |, there exists a model (g ,Π) on T
such that Π(•j ) = ζj , for all 1 ≤ j ≤ `. For regularity structures built from singular
PDEs, one can further impose that the model is admissible.

Let T be a regularity structure built from a singular PDE.

Signature of admissible models (B. Hoshino 2019) – Let T ′ ⊂ T be a sub-regularity
structure of T , such that T ′ contains all the elements of T of negative homogeneity.
Then any admissible model on T ′ has a unique extension into an admissible model on
T , called its signature in T .
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3. From paracontrolled systems to modelled distributions
Previous assumptions are on the regularity structure T =

(
(T ,∆), (T+,∆+)

)
. Here

is an assumption on a basis of T .

Assumption (H) – For any σ ∈ B•, there is no term fo the form µ⊗ X k with k 6= 0,
in the formula for ∆σ.

Proposition (B. Hoshino 2019) – The regularity structures built be Bruned, Hairer
and Zambotti for the study of singular PDEs have a basis that satisfy this assumption.
(The natural basis does not satisfy it!)

Theorem (B. Hoshino 2019) – Let T be a reasonable regularity structures satisfying
further assumption (H). Let (g ,Π) be a model on T . The space Dγ(T , g) of
modelled distributions is bi-Lipscthiz homeomorphic to the product space∏

σ∈B•

Cγ−|σ|(Td ),

via the paracontrolled representation

f σ =
∑

σ<µ;|µ|<γ
Pf µ [µ/σ]g + [f σ]g, (1)

for f(·) =
∑
σ∈B f σ(·)σ ∈ Dγ(T , g) – recall B• = B\(non-constant monomials).
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(Proving this statement happens to be equivalent to an extension problem for the map
g .)
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Theorem (B. Hoshino 2019) – Let T be a reasonable regularity structures satisfying
further assumption (H). Let (g ,Π) be a model on T . The space Dγ(T , g) of
modelled distributions is bi-Lipscthiz homeomorphic to the product space∏

σ∈B•

Cγ−|σ|(Td ),

via the paracontrolled representation

f σ =
∑

σ<µ;|µ|<γ
Pf µ [µ/σ]g + [f σ]g, (1)

for f(·) =
∑
σ∈B f σ(·)σ ∈ Dγ(T , g) – recall B• = B\(non-constant monomials).

The use of paracontrolled systems like (1) is the starting point of the paracontrolled
approach to singular PDEs.



Thank you for your attention!


